

VILLASframework

A framework for Virtually Interconnected Laboratories for LArge systems Simulation/emulation

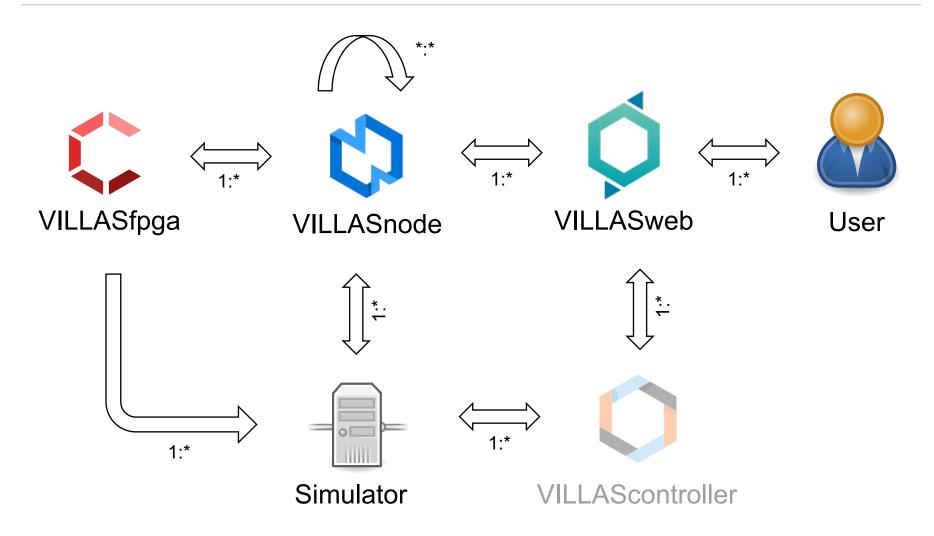
Institute for Automation of Complex Power Systems (ACS) RWTH Aachen University Germany

Prof. Antonello Monti, Ph. D.

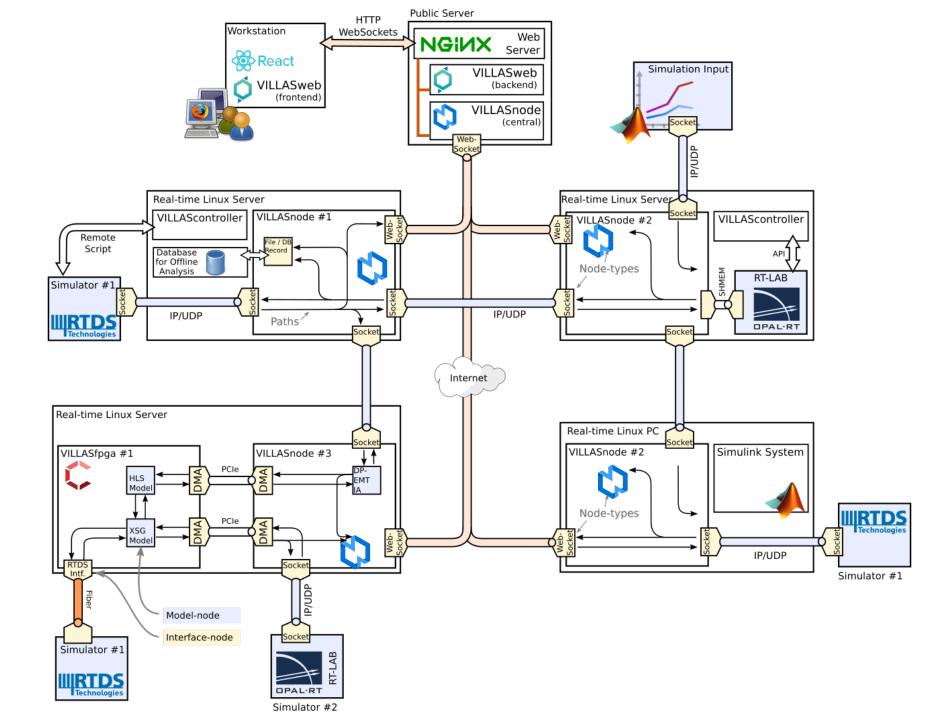
ACS | Automation of Complex Power Systems

VILLAS Framework for virtual integration of laboratories for co-simulation

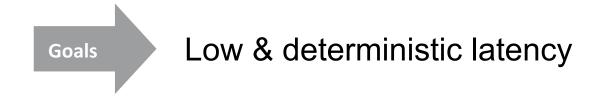
- VILLAS framework Virtually Interconnected Laboratories for LArge systems Simulation/emulation
 - a flexible integration of the resources available at each laboratory
 - a flexible utilization of an infrastructure as a whole
- VILLASframework aims at providing a specific set of interfaces and services
 - hard and soft real-time interfaces
 - = integration of geographically dispersed hardware and software assets for joint operation in a single experiment
 - high-level interfaces such as a user interface, an interface for data logging
 - = interactions with an experiment and post-processing of results for further analyses
 - high-level services, such as Simulation as a Service, Data as a Service
 - = flexible access for third parties to leverage utilization of the infrastructure


- General design objectives
 - A holistic framework with modular and generic architecture
 - Portability of interfaces among laboratories for integration of different local assets (digital real-time simulators, measurement devices, estimation and control algorithms)
 - Plug-and-play framework for geographically distributed test beds and co-simulation

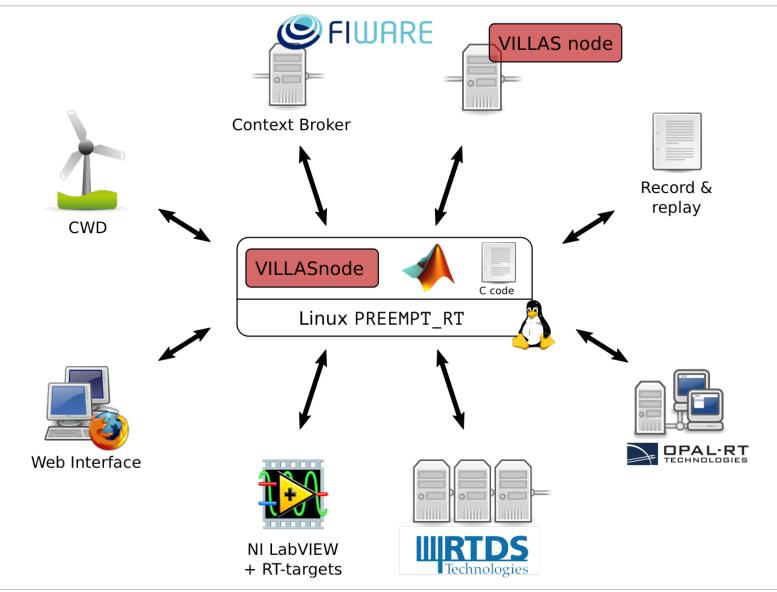
The main pillars of VILLASframework


- **VILLASnode** Gateway for connecting simulation equipement
- **VILLASfpga** Extendended hard-realtime capabilities and FPGA-based models
- **VILLASweb** Planning, Execution and Analysis of complex simulation scenarios
- VILLAScontroller Unified API for controlling DRTS (OPAL, RTDS, Simulink) (planned)

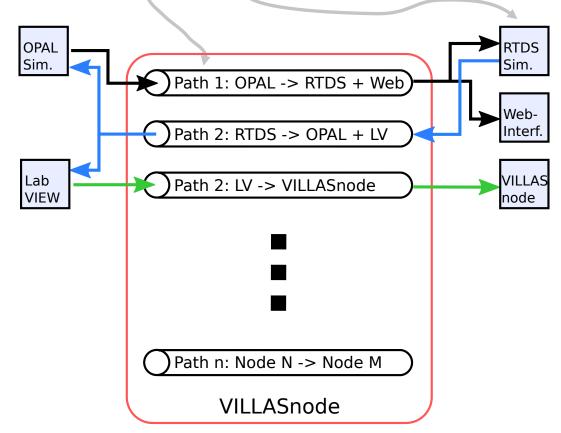
VILLASframework Overview



VILLASnode Design decisions


Make an interface as transparent to the simulator/hardware as possible

- Object oriented low-level C for best performance
- Make use of Linux real-time features (<u>PREEMPT_RT patchset</u>)
- Multi-threaded, non-blocking design
- Reserved CPU cores for execution
- Only depends on **open source** tools & libraries


VILLASnode Interfaces

VILLASnode Overview

- Router for sample / value based simulation data
 - 1-to-n forwarding of sample values
 - MUX and DEMUX supported
 - Concept of <u>unidirectional</u> paths, nodes & hooks

VILLASnode Concept

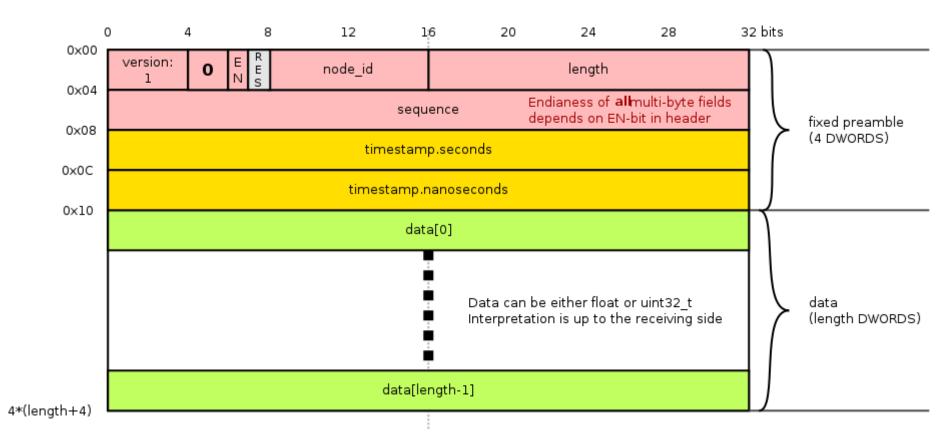
Nodes

- Representation of a Simulator / Model
- Two types:
 - = Model: runs on same machine
 - = Interface: connect an external simulator
- Acts as a source or sink of samples

Paths

- Unidirectional connection between nodes: 1-to-N (1 source, N sinks)
- Hook functions
 - = Interface algorithms
 - = Dynamic phasor conversion (DFT)
 - = Down-sampling
 - = Timestamping
 - = Collect statistics
- Hooks
 - Process / Filter the forwarded data with user-defined functions

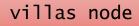
Node-type	Description	Note
socket	Standard BSD Sockets	UDP, IP, IEEE802.3 Support for RTDS' GTNETv2-SKT
websocket	Connection-oriented interface for webbrowsers	Firefox BrowserVILLASweb
ngsi	Next Genereration Services Interface	FIWARE Orion Context Broker
file	Reading and logging from files on harddisk	Static load profileReplay
opal	OPAL-RT Shared Memory	Not synchronized (libOpalAsyncApi)
fpga	VILLASfpga	PCIe Interface + DMA to RTDS (GTFPGA)



VILLASnode Node-types (cont'd)

Node-type	Description	Note
cbuilder	Run RTDS Cbuilder components	(depracted)
shmem	Shared memory to processes running on the same machine	(ongoing)
register	(De-) Multiplex to / from multiple nodes	(ongoing)

VILLASnode Network Packet Format for <u>socket</u> and <u>websocket</u> node-types


This protocol is only used by socket and websocket node-types! Each node-type can define it's own protocol (e.g. NGSI uses HTTP REST + JSON)

VILLASnode Tools / Applications

Main server:

- Runs one or more paths
- Multi-threaded
- Collects statistics
- Filter / Process data with hook functions
- Signal generator:
 - Generate square, sine, ramp, triangle and random signals
 - Adjustable timestep, amplitude & frequency
- Read / write from / to stdin / stdout:
 - Pipe to / from files
 - User input
 - Debugging
- Run hooks with stdin / stdout data

villas pipe

villas hook

VILLASnode Features Overview

- Supports heterogenous environments
 - OPAL-RT
 - RTDS
 - LabVIEW
 - E Custom Ethernet / IP / TCP & UDP Transports
- Synchronization
 - Timestamping
 - NTP / PTP
 - Fixed Rate Sending
- QoS Monitoring
- Network Emulation
- Flexible Hook Functions
 - Dropping of re-ordered UDP packets
 - FIR Filtering
 - Logging
 - Much more...

- Tools
 - Generate random data
 - Manual send / receive
 - Replay
- Very low-latency forwarding
 - Thread / IRQ Pinning
 - CPU isolation
 - Zero-copy
 - Multithreaded

VILLASnode Deployment

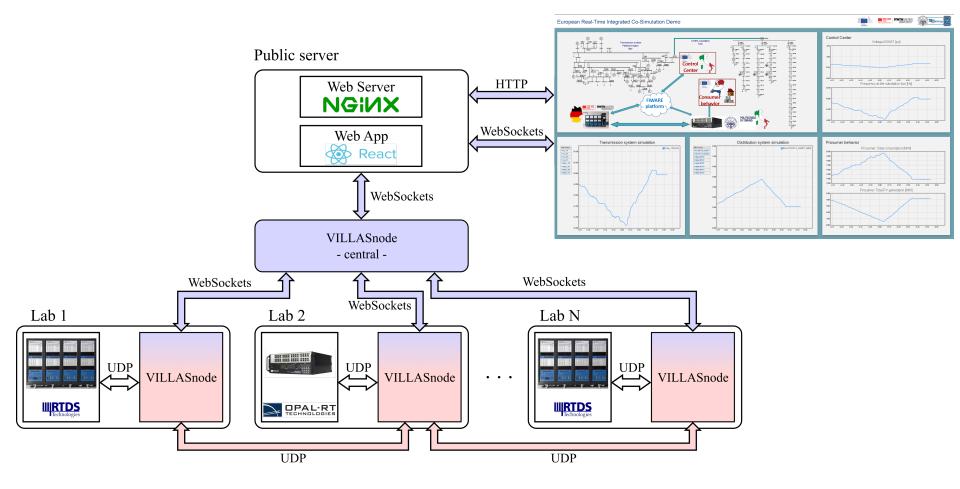
- ACS provides support for deploying VILLASnode instances
- Distribution
 - Docker images for non real-time crititical applications / development / testing
 - Ready-to-go USB live image or installer based on Fedora Linux
 - RPM Software packages for CentOS / Fedora / Redhat
- Development
 - Collaboration & patches are welcome
 - We use GitLab for project management
 - VILLASnode software is distributed under LGPLv2 license

VILLASnode Requirements

Network

- Direct GigEthernet connection to OPAL-RT/RTDS
- Separate Ethernet connection to the Internet
- Commodity PC / Server
 - Intel **x86-64** architecture
 - Bare metal Linux-based operating system
 - = No background processes & GUI
 - RT_PREEMPT Kernel Patch set
 - Nice to have:
 - = Dual port Network Interface Card (NIC)
 - = Support for IEEE-1588: Precision-Time-Protocol (PTP)
 - = Recent Multicore CPU (for best determinism)

Linux knowledge



VILLASweb Overview

- Web interface for planning, controlling & analysing the distributed simulation
- Work-in-Progress
- The stages
 - 1. Planning of simulation
 - = Upload models
 - = Upload input data
 - = Map models onto simulators
 - 2. Running simuation
 - = Live-stream of selected Voltages / Currents / etc.
 - = User interaction with button / sliders
 - 3. Analysis / Collection of results
 - = Download results to workstation

Consolidated monitoring of the co-simulation with measurements from all subsystems

Identity Management	VILLASweb	
	Login Username Username Password Password Login	
	Copyright © 2017	
Menu overview – Simulato	ors	

■ Status and configuration of simulators

	VI	LLASweb		Simulator offline Simulator 'RTDS' went offline.	
Menu	Simulators	Status	Notification		
Home Projects	Name			Endpoint	
Simulations Simulators	RTDS Not running			localhost/ws	× ×
Logout	Opal RT Running			localhost:5000/ws	× ×
	Virtual Simulator Running			localhost:5001/ws	× ×
	+ Simulator				
	Configure new simi	ulator			

VILLASweb Overview (cont'd)

- Menu overview Simulations
 - Multiple *Simulations* can be created and configured for available simulators
 - A Simulation refers to a setup of a co-simulation experiment with defined subsystem models
 - = For instance, we can create multiple *Simulations* for RT-Super Lab Demo that refer to different stages of demo development

VILLASweb

Menu	Simulations	
Home Projects	Name	
Simulations Simulators	VILLAS simulation	/ ×
Logout	Transmission simulation	× ×
	+ Simulation	

Menu overview – Simulation Models

■ *Simulation* configuration requires configuration of *Simulation Models* for simulators that are included in the co-simulation experiment

Menu	Admin's simulation					
Home Projects	Name			Simulator	Length	
Simulations	RTDS model			RTDS	3	/ ×
Logout	Opal RT model			Opal RT	8	/ ×
-	Virtual model			Virtual Simulator	8	× ×
onfigure new	Simulation Model	Name Opal F Simulat Opal R Length 8 Mapping	9	• • •		
		ID	Name	Туре		
		0	Voltage 2703	Volt		
		1	Voltage 2844 Voltage 189	Volt		
		3	Current 14	Ampere		
		4	Current 17	Ampere		

VILLASweb

VILLASweb Overview (cont'd)

- Menu overview Projects
 - Multiple *Projects* can be created and configured for a *Simulation*
 - = A *Project* can refer to a specific case study of a co-simulation experiment VILLASweb

Menu	Projects				
Home Projects Simulations Simulators	Name	Simulation			
	Power distribution	VILLAS simulation	/ ×		
Logout	Power transmission	VILLAS simulation	/ X		

- Menu overview Visualizations
 - Multiple Visualizations can be created and configured for a Project
 - A user can create different layouts (e.g. Summary or Detailed) for monitoring of simulation results
 VILLASweb

lenu	Power transmission	
Home Projects Simulations Simulators	Name	
	Complete layout	/ X
.ogout	Summary layout	<i>i</i> ×
	+ Visualization	

VILLASweb Overview (cont'd)

A user can create a customized visualization of the co-simulation experiment

VILLASweb

E.ON Energy Research Center

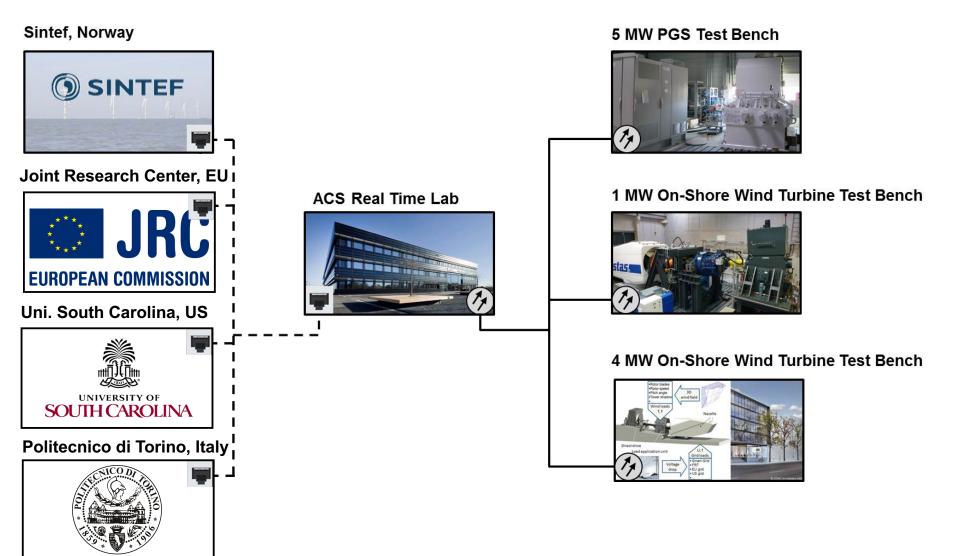
VILLASfpga

- Extend VILLASnode instances with FPGA ressources
 - Interface DRTS
 - = RTDS via GTFPGA netlist
 - = Typhoon, OPAL-RT via Aurora protocol
 - Run models / interface-algorithms
 - = Simulink / Xilinx System Generator models
 - = C++ code using High Level Synthesis

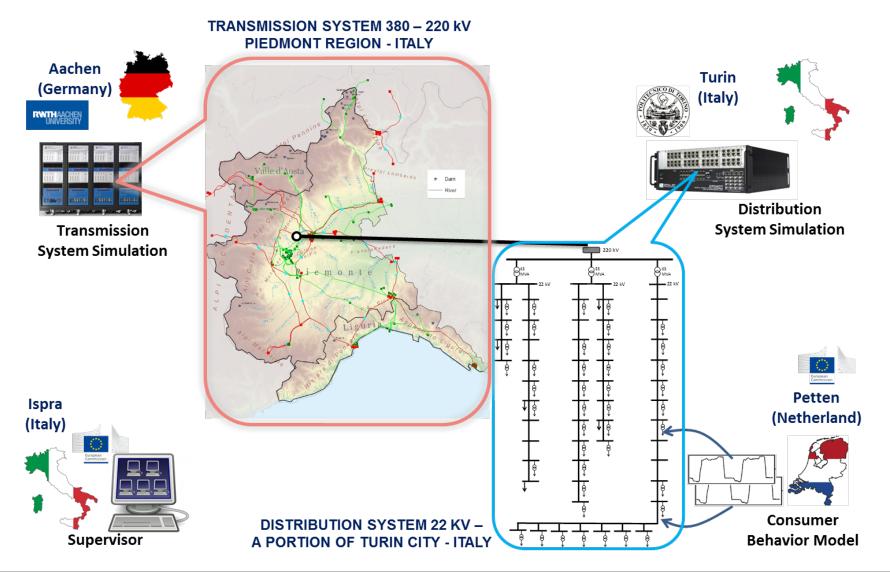
VILLAScontroller

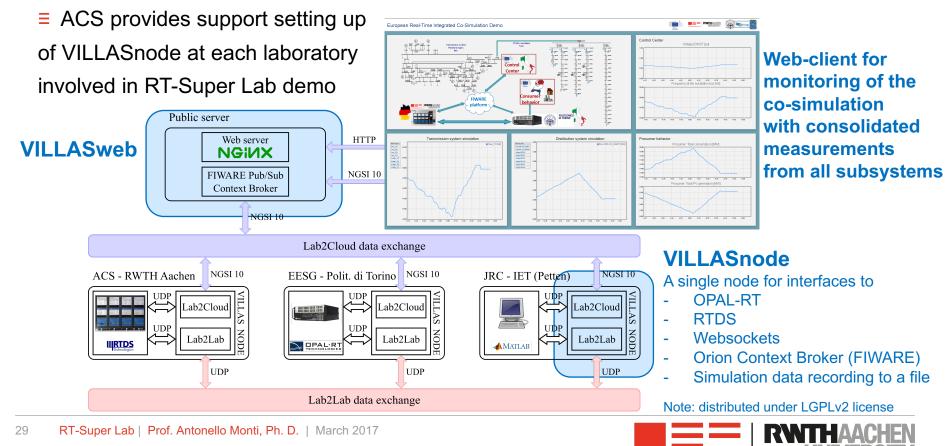
- Provide a unified API for controlling a heterogenous environment of simulators
 - Load Model
 - Set Parameters
 - Start / Stop Simulation
 - Retrieve status of simulator
- Used by VILLASweb
- Planned for Q3/Q4 2017
 - Implemented in NodeJS

Contact


E.ON Energy Research Center Mathieustraße 10 52074 Aachen Germany Prof. Antonello Monti, Ph. D. T +49 241 80 49703 F +49 241 80 49709 amonti@eonerc.rwth-aachen.de http://www.eonerc.rwth-aachen.de

ACS | Automation of Complex Power Systems


External Interconnections


Example of virtual integration over Wide Area Network ERIC Lab demonstration

VILLAS Framework for virtual integration of laboratories for co-simulation

- Design objectives for a framework for virtual integration of laboratories
 - a flexible integration of the resources available at each laboratory
 - a flexible utilization of an infrastructure as a whole
- VILLAS framework Virtually Interconnected Laboratories for LArge systems Simulation/emulation

E.ON Energy Research Center