

Development of a modular and fully-digital PCIe-based interface to Real-Time Digital Simulator

Master Thesis Defense Presentation

Steffen Vogel

ACS | Automation of Complex Power Systems

Agenda

- Objectives
- Architecture
 - VILLASfpga
 - VILLASnode

Linux

- Real-time Optimizations
- Driver API

FPGA

- Datamovers / Synchronization
- RTDS Interface
- Example Applications
- Future work

High-level Architecture

Motivation

Flexible framework

- Extensible
- Reuse of existing intefaces
- Integration into VILLASnode concept = Hard / Soft real-time
- No VHDL knowledge
 C / C++, Simulink models

Objectives

- Framework for power system co-simulation on FPGAs
 - Extensible
 - Hard Real Time

Leverage flexibility of Linux and performance of specialized DRTS

- Example: Interface to RTDS
 - Synchronized data exchange with sub 10 uS time-steps
- Get familiar with latest FPGA design tools & methodologies
 - ≡ High Level Synthesis (C / C++)
 - System Generator for DSP (Simulink + Matlab)
 - Electronic System Level Design (ESL)

Optimize Linux for hard real-time simulation

Applications

- Real-time co-simulation
 - One subsystem running on Linux
- Hybrid simulation: EMT + dynamic phasors
 - DFT implementation on FPGA
 - One subsystem is running in phasor domain on Linux
- Interface algorithms for geographically distributed simulation
 - Prediction and compensation of communication delay
 - DFT / wavelet transforms
- Custom communication protocols for RTDS: EtherCat...
- User interaction & monitoring
 - WebSockets, FIWARE
- Data logging & replay

6

■ Big Data (we could capture every timestep)

Architecture: VILLASnode

Architecture: VILLASnode + VILLASfpga

Full picture of possible VILLASnode topology.

Hardware: Xilinx VC707 Evaluation Board

LC Multi-mode Fiber

SFP Module

Architecture: VILLASfpga

R\\\

10

Architecture: IP Integrator

Vivado IP Integrator Block Diagram

Architecture: IP Integrator (Model)

Vivado IP Integrator Block Diagram of Model Hierarchy

A PCIe-based Co-simulation Interface | Steffen Vogel | Thesis Defense | 29.04.16

12

Architecture: IP Integrator (PCIe)

E.ON Energy Research Center

13

Interconnect

- Virtex 5 (ML507)
 - Memory Mapped: Processor Local Bus (PLB)
 - Streaming: Local Link (LL)
 - Influenced by IBM PowerPC architecture

- Virtex 6/7 (ML605 / VC707)
 - Memory Mapped: AXI4 & AXI4-Lite
 - Streaming: AXI4-Stream
 - Advanced Microcontroller Bus Architecture (AMBA) introduces by ARM Inc.

Interconnect Standards from ARM

AXI4-Stream

- AXI4-Stream enables **pipelining**
 - FIFOs instead of Addressable Mem
- Cut-through instead of Store-and-forward
 - Reduced latency
- Examples
 - ≡ Filters
 - Recursive / Short-term DFT

Implicit synchronization

Xilinx ML507 Evaluation Board

- Integrated PPC440 CPU
- 5th generation Virtex FPGA
- Supported by ISE IDE only

Two boards are used at ACS

© Xilinx Inc.

Xilinx ML605 Evaluation Board

- 6th generation Virtex FPGA
- Supported by ISE IDE only

We have one in OPAL-RT OP5600

© Xilinx Inc.

Xilinx VC707 Evaluation Board

- 7th generation Virtex FPGA
- Supported by Vivado IDE
- We bought one

© Xilinx Inc.

Existing RTDS Interfaces: GTNET cards

- Supports a variety of protocols: IEC61850 Goose & SV, IEC60870-5-104, DNP, UDP, TCP
- GTNET-SV: IEC 61850-9-2 Sampled Values
 Up to 256 samples / cycle (12.8 kHz for f=50 Hz)
- GTNETv2-SKT
 - Up to 300 values at 1 kHz
 - Less then 60 values at 5 kHz
 - ≡ GTNETx1 limited to 100 Hz

© RTDS Technologies

Existing RTDS Interfaces: GTFPGA / MMC support unit

- First digital RTDS interface was demonstrated by CAPS / ABB in 2008
 - 16-bit LVDS digital interface between to GTFPGA cards
- Closed source IP (compiled NGC netlist)
- Up to 64 values per direction and time step (FP or Integer)

© CAPS, Michael Sloderbeck

Linux, Drivers & Optimization

ACS I Automation of Complex Power Systems

Linux Real-time Optimizations

Linux

- Tickless kernel!
- Pinned threads and IRQs (isolcpus)
- Preemptible Kernel: PREEMPT_RT patchset

System

- Avoid System Management Interrupts
- Reduce PCIe bus contention and auxiliary IRQs
- Lock-less datastructures: queues, lists, stacks

SW Driver

- Linux provides APIs to implement drivers in userspace
 - Userspace IO (UIO)
 - Virtual Function IO (VFIO)
 - ≡ /sys/bus/pci/[bdf]/resources
 - = /dev/mem + /proc/[pid]/pagemaps
- Ideally we would implement the driver as a custom kernel module
 - Disadvantages:
 - = Context-switches become critical for small timestep simulations
 - = Maintenance of out-of-tree module
 - = Compilation of kernel / module

Comparison

Userspace IO (UIO)

- No bus-mastering
 - = No DMA
 - = No MSI interrupts
- /dev/mem + sysfs
 - Bus-mastering possible with dirty hacks
 - No device isolation by IOMMU
 - DMA continuous allocation only with hugepages
 - No MSI support
 - Requires superuser privileges
- Virtual Function IO (VFIO)
 - "Successor" of UIO
 - Mostly used by KVM and DPDK
 - Safe bus-mastering by isolating devices in IOMMU containers.
 - No superuser privileges required

Driver Comparison

	UIO Userspace IO	VFIO Virtual Function IO	Sysfs /sys/bus/pci + /proc/pagemap	LKM Loadable Kernel Module
Bus-mastering		v	ugly	V
Interrupts	Legacy only	Legacy + MSI		v
DMA		 ✓ 	ugly	 ✓
IOMMU Isolation		 ✓ 		()
Req. permissions	Superuser	flexible	Superuser	flexible
Users	DPDK, Closed Source Drivers	KVM, DPDK	Nobody	Upstream Drivers
Userspace	 ✓ 	v	 ✓ 	()
IPC	mmap()	mmap() ioctl()	read() write() mmap()	flexible

Datamovers: CPU <-> FPGA

- Transfer data between FPGA and CPU
- Convert from memory-mapped to packet streaming bus
- Usually two channels:
 - Device to Host: Stream to Memory-mapped (S2MM)
 - Host to Device: Memory-mapped to Stream (MM2S)

- Direct Memory Access (DMA)
 - Data transfer is delegated to DMA controller on FPGA
 - CPU is not occupied
 - PCI Bus Mastering: Device writes to host memory
- Programmed / Memory Mapped IO (MMIO / PIO)
 - Direct register access
 - ≡ FIFO

PCIe Interface: Datamovers

Address Spaces & Methods

Address spaces and Access methods

PCIe Interface: Datamovers

Synchronization Methods

Interrupts

- Legacy (INTX)
 - = Out-of-band: Data-races possible
 - = Only 4 physical interrupt lines
- Message signalled (MSI)
 - = In-band: ordering with data preserved
 - = Lower latency
 - = Supports up to 32 vectors
- Polling
 - Host RAM
 - = Directly poll on DMA buffer descriptors
 - PCI mapped memory (BARs)
 - = Poll Interrupts status registers
 - Network Interface Quibbles (NIQ)
 - = long polling
 - = delayed PCI read-completion TLPs (up to 50ms)

PCIe Interface: Latency

Response time to interrupt generated on FPGA

- ≡ Polling: ~ 1 uS
- ≡ Interrupts: > 2 uS

PCle Interface: Jitter

- Periodic timer IRQ every 50 uS ~ 170k clks
- Similiar results for polling on real-time and non real-time kernel
- Big differences for IRQs
 - Differences in PREEMPT_RT interrupt handling

Comparison of interrupt jitter (Linux 4.5.7 vs 4.0.4-rt x86_64 SMP)

Synchronization

- Events require synchronization
 - Simulation started / stopped
 - New timestep started
 - Deadline missed / overrun
 - Data transfer completed

- "Hard" synchronized
 - Reference to global time
 - Attached HIL devices
 - Multiple HIL devices

"Soft" synchronized
 Only logical order is preserved

Synchronization: "Hierarchy"

FPGA implementation

- 8 clocks
- 4 clock domains

Clock Domain Synchronization

Timing

👉 Update

36

Timing 2

- Different communication schemes are possible
- Limitations imposed by capabilities of RTDS_InterfaceModule
 - Sends data only at beginning of TS
 - Sends data only once per TS

A PCIe-based Co-simulation Interface Steffen Vogel | Thesis Defense | 29.04.16

Computation

Update

PCIe / RTDS Interface: Overruns

- Biggest matrix dimension which can be solved by LU decomposition?
 - Net-lib's LAPACK
- Detecting overruns by abnormal RTT
- Parallel communication pattern, time step: 50 us

Round-trip Time: RTDS-Linux-RTDS

A PCIe-based Co-simulation Interface | Steffen Vogel | Thesis Defense | 29.04.16

RTDS-Linux-RTDS

40

Example Applications

ACS I Automation of Complex Power Systems

Original network

To be decoupled into two subsystems (SS1 + SS2)

Decoupled network by Ideal Transformer Model (ITM)

- SS2 is replaced by CBuilder component
- CBuilder component includes solver
- Added ∆dt delay for control signals Vss2A & Iss1A

- With GTFPGA interface
- CBuilder code is cross-compiled on Linux
 - Some C and header files are used with some tricks

Results: Simple Circuit

- $f_0 = 1$ kHz, Δt = 25 μs
- 1 time step latency
- 1 additional time step due to coupling of control and power system solution (T2 vs T0 zone)

Example: Sliding DFT

- Simple Recursive implementation
- Window over fundamental period: z^{-N}
- 3 Additions, 2 Multiplications per frequency and sample

$$S_k(n) = e^{j2\pi k/N} [S_k(n-1) + x(n) - x(n-N)]$$

Performance: 68 clk cycles + 2 clk cycles per harmonic (pipelined)

≡ IEEE 754 Single Precission FP

E. Jacobsen and R. Lyons, "The sliding DFT," IEEE Signal Processing Magazine, vol. 20, no. 2, pp. 74-80, Mar. 2003.

47

High-level Synthesis

IP Integrator


```
void hls dft(hls::stream<axis> &input, hls::stream<axis> &output,
            float fharmonics[MAX HARMONICS], ap int<8> num harmonics, ap int<8> decimation) {
        #pragma HLS INTERFACE s axilite port=return,fharmonics,num harmonics,decimation bundle=ctrl
        #pragma HLS INTERFACE axis port=input,output
        #pragma HLS STREAM depth=64 variable=input,output
        #pragma HLS DATAFLOW
       /** Previous coefficients for incremental update */
        static std::complex<float> coeffs[MAX HARMONICS];
       /* Time */
       static float t;
       static ap int<32> decimation cnt;
       /** Sliding window of samples */
       static ap shift reg<float,NSAMPLES> windows[MAX VALUES];
       /** AXI Stream signals */
       axis real, imag, refph;
       for (int index = 0; index < MAX VALUES; index++) {</pre>
               /* Read real-valued time-domain data from AXI Stream interface */
               axis in = input.read();
               /* Shift and get data from SLR */
               float newest = in.data;
               float oldest = windows[index].shift(newest, NSAMPLES-1);
               for (int i = 0; i < num harmonics; i++) {</pre>
                       #pragma HLS PIPELINE II=2
```

49

Results: Dynamic Phasor – EMT transformation

- Alignment of reference phase can be problematic
 - Simulations must be started simulateously

Results: Dynamic Phasor – EMT transformation

DFT32 block on RTDS is subject to distortions in case of fast transients

E.ON Energy Research Center

Conclusion

Real-time co-simulation interfaces with latencies below 1 time-step are feasible

- ≡ 2 time step round-trip (parallel, 1 time step per direction)
- 1 time step round-trip (serial, RTDS->Linux->RTDS)
- Time-step periods **over 25 uS** are pretty stable
- Results align with first tests made between OPAL-RT and RTDS
- Presented architecture is flexible and extensible
 - Comes at the cost of increased complexity and step learning curve
- Interaction of control system and power system solution of RTDS may add an additional time-step latency
- Hard real-time on Linux is possible but fragile
 - Already small changes, different kernel versions or improper coding style will cause issues

Future work: Applications

Use the framework: It's there.

- Additional interfaces
 - Industrial ethernet: EtherCAT, PowerLink, ...
 - Connection to PGS, CWD, EBS labs
 - PHIL amplifiers:
 - = OPAL RT-Link ORION, Aurora
- FPGA based models: C/C++, Simulink
- Real-time co-simulation of power and communication systems
 - Linux runs NS3 as a communication emulator
- Multi-physics co-simulation
 - RTDS: electrical
 - Linux: thermal
 - Multi-rate interface is required
- Flexible control algorithms running on Linux

Future work: Framework

- Add FMC extension module for more fiber optic connections
 - FPGA-to-FPGA
 - FPGA-to-RTDS
- Sync RTDS as Slave
- Small time-step mode (< 10 uS)</p>
- Test other targets / OS's
 - RTOS: VxWorks
 - AMP: HermitCore? Baremetal?
 - Architectures: NUMA, ARM (Zynq)
- Simplify usage by adding more automation (ESL)

FMC Quad-SFP Extension Module

E.ON Energy Research Center

Acknowledgments

Thanks to my supervisors Marija Stevic & Stefan Lankes for their advise and support.

Thanks to RTDS Technologies for their support and access to the GTFPGA interface.

Thanks to OPAL-RT Technologies for testing and support of the RTDS-OPAL co-simulation interface.

Thanks to Xilinx Inc. for sponsoring software licenses within the XUP and their excellent tools which made this work possible.

E.ON Energy Research Center

Contact

E.ON Energy Research Center Mathieustraße 10 52074 Aachen Germany Steffen Vogel stvogel@eonerc.rwth-aachen.de http://www.eonerc.rwth-aachen.de

http://www.steffenvogel.de

ACS I Automation of Complex Power Systems

