

Applications of VILLASframework

Geographically Distributed and Local Power System cosimulation

Technical Workshop of the ERIGrid Project

13.09.2018 Oldenburg, Germany

Prof. Antonello Monti

ACS | Automation of Complex Power Systems

Co-Simulation Interface Algorithm (IA)

- Co-Simulation Interface Algorithm (IA) for geographically distributed real-time simulation (GD-RTS)
 - Objectives: conservation of energy at the interface and interface transparency
 - Violation of energy conservation at the interface is inherent problem in (geographically) distributed cosimulation due to the following
 - = system decoupling (subsystems are solved separately)
 - = communication medium (delay, delay variation, packet loss, limited data sampling...
 - Co-simulation IA should preserve stability of the simulation and ensure simulation fidelity

Violation of energy conservation in GD-RTS

Co-simulation IA based on Dynamic Phasors

- Co-Simulation IA for geographically distributed real-time simulation
 - = based on one of the most commonly employed IA for PHIL interfaces: ideal transformer model (ITM)
 - = controlled current and voltage sources that impose in the local subsystem the behavior of the remote subsystem
 - current and voltage interface quantities are exchanged between the simulators in the form of time-varying Fourier coefficients, known as dynamic phasors
 - ≡ time clocks of the two simulators are synchronized to the global time
 - dynamic phasor concept includes absolute time that enables time delay compensation based on the phase shift

Example of Application of Co-Simulation Interface Algorithm based on **Dynamic Phasors**

ACS-SINTEF Distributed Real-Time Simulation Platform

- Real-time simulation of multi-terminal HVDC grids interconnected with AC grids and wind farms
 - = Studies of potential interactions of the control concepts implemented in the AC grid generators and control strategies of converters
- VSC-HVDC point to point link that connects two AC systems
 - \equiv a case study to demonstrate applicability of the Internetdistributed simulation platform for simulation of HVDC grids

Simulation start

System response after simulation start indicates high fidelity of geographically distributed simulation in steady state and during slow transients

-0.5

0

0.2

0.4

E.ON Energy Research Center

0.6

Time [s]

0.8

1.2

ERIC Lab Demonstration

Objectives of simulation scenario

- Real-time co-simulation of the interconnected transmission and distribution systems
- Studies of how different levels of distributed generation, EV penetration in the distribution system affect the system operation at both transmission and distribution levels
- Collaboration based on a virtual integration is particularly beneficial for this scenario
 - There is a need for large-scale power system simulation consisting of detailed simulation models of both transmission and distribution systems
 - Competences of different areas are required (transmission and distribution systems, consumer behavior patterns)
 - Confidentiality aspects of sharing data and models among operators is not an issue as only interface quantities at the decoupling point are exchanged
- Overview of roles of laboratories
 - Transmission system is simulated on RTDS system at RWTH, Germany
 - Distribution system is simulated on OPAL-RT system at POLITO, Italy
 - Prosumer behavior patterns are provided by JRC-Pettan, Netherland
 - Monitoring based on a web-client in JRC-Ispra, Italy

ERIC Lab Demonstration Web Interface

RT-Super Lab Transatlantic Distributed Test Bed

Objectives

- Establish a vendor-neutral distributed platform based on interconnections Digital Real-Time Simulators (DRTS), Power-Hardware-In-the-Loop (PHIL) and Controller-Hardware-In-the-Loop (CHIL) assets hosted at geographically dispersed facilities
- E Demonstration of multi-lab real-time simulation and distributed PHIL and CHIL setup for simulation and analysis of next generation global power grids

United States of America

Europe

VILLASframework for RT-Super Lab

VILLASnode

- An instance of VILLASnode installed at every laboratory
- Gateway for connecting digital real-time simulators
- Interface to VILLASweb

VILLASweb

- Web interface for consolidated monitoring of the distributed simulation
- Web Server, Backend and Database hosted at INL for RT-Super Lab Demo
- Web interface is available within VPN for all participants

RT-Super Lab Demonstration

Leverage unique hardware assets located at different laboratories and academic institutions for simulation and testing of next generation interconnected grids

 \equiv 8 Labs

- = 5 OPAL-RT, 4 RTDS, 1 Typhoon
- 1 CHIL at USC Ξ
- Communication network emulation based on Apposite N-91

2 PHIL =

10

- = NWTC Controllable Grid Interface (CGI) interfaced to the GE 1.5 MW wind turbine
- = Test Bed for PV inverters
- Simplified transatlantic HVDC Ξ interconnection of transmission systems in the U.S. and Europe

RT-Super Lab Participants

National Labs

US universities

EU universities

Laboratory		Simulation model / HIL setup	Subsyste
Full Name	Acronym		m ID
Idaho National Laboratory	INL	Western Systems Coordinating Council (WSCC); HVDC converter station	ss1
National Renewable Energy Laboratory	NREL	PHIL for wind turbines	ss5
Sandia National Laboratories	SNL	PHIL for PV inverters	ss6
Colorado State University	CSU	IEEE 13-bus distribution test feeder	ss4
University of South Carolina	USC	Modified IEEE 123-bus distribution system, CHIL, communication emulation	ss7
Washington State University	WSU	Simplified CERTS microgrid	ss8
RWTH Aachen University	RWTH	European transmission network benchmark model (CIGRÉ); HVDC converter station	ss2
Politecnico di Torino	POLITO	European distribution network benchmark model (CIGRÉ);	ss3

RT-Super Lab Simulation results #1

Activation of CHIL at USC

- PV inverters controlled to minimize reactive power at the substation of IEEE 123-bus system
- Simulation results at ss1-ss7 co-simulation interface (INL-USC)
 - Decrease in reactive power at co-simulation (substation) bus

RT-Super Lab Simulation results #2

- Flow of power from INL to RWTH via HVDC
- Power in the HVDC link is decreased by 25 MW
 - Generators at WSCC (INL) respond
 - System frequency at INL increases

RT-Super Lab Simulation results #3

- Frequency support from a wind turbine
 - Over frequency event on account of over-generation
- Wind turbines respond based on droop settings
 - Negative sign indicates import to INL from NREL

Local Power System co-simulation Interconnection of RTDS and OPAL-RT at ACS lab

Hard real-time communication

Synchronized execution of simulation time steps

RTDS Rack next to OPAL-RT OP5600

RTDS rear panel: GPC cards

OP5600 rear panel: internal fiber connection to ML605 SFP port

Models Transmission: Benchmark Network for DERs testing (by CIGRé)

- High Voltage Transmission Network Benchmark European Configuration
 - 13 buses, 4 generators
 - ≡ 220 and 380 kV, 50 Hz
 - Simulated on RTDS

Models Distribution: Benchmark Network for DERs testing (by CIGRé)

- Simulated on OPAL-RT
- Medium Voltage Distribution Network Benchmark European Configuration
 - 14 buses
 - 2 feeders
 - 2 transformers
 - 46 MVA contractual load
 - Different PV penetration levels:
 - = 6 %

= 20 %

TN & DN interactions Simple Demonstration: Scenario

The loss of generator 2 at bus 3 of TN causes a voltage drop in neighbouring buses and, consequently, the disconnection of PVs in DN (details represented) connected to bus 4.

TN & DN interactions Simple Demonstration: Interface values

- ≡ Currents and voltages measured at the interface point on the two simulators.
 - = Instantaneous voltages decrease after G2 disconnection
 - = Interface accuracy is guaranteed also during transients

TN & DN interactions Simple Demonstration: Results

- In this scenario, the Italian LVRT capability allows most of the PVs to stay connected in the detailed DN:
 - = Using co-simulation, new LVRT curves and different placement for PV plants can be analysed with regard to the voltage security after an event in the transmission network.

Contact

E.ON Energy Research Center Mathieustraße 10 52074 Aachen Germany Prof. Antonello Monti, Ph. D. T +49 241 80 49703 F +49 241 80 49709 amonti@eonerc.rwth-aachen.de http://www.eonerc.rwth-aachen.de

ACS | Automation of Complex Power Systems

