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Co-Simulation Interface Algorithm (IA)

■ Co-Simulation Interface Algorithm (IA) for 
geographically distributed real-time simulation 
(GD-RTS)
≡ Objectives: conservation of energy at the interface 

and interface transparency 

≡ Violation of energy conservation at the interface is 
inherent problem in (geographically) distributed co-
simulation due to the following 

= system decoupling (subsystems are solved 
separately)

= communication medium (delay, delay variation, 
packet loss, limited data sampling…

≡ Co-simulation IA  should preserve stability of the 
simulation and ensure simulation fidelity

Violation of energy conservation in GD-RTS
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Co-simulation IA based on Dynamic Phasors
■ Co-Simulation IA for geographically distributed real-time simulation 

≡ based on one of the most commonly employed IA for PHIL interfaces: ideal transformer 
model (ITM) 

= controlled current and voltage sources that impose in the local subsystem the behavior 
of the remote subsystem

≡ current and voltage interface quantities are exchanged between the simulators in the form 
of time-varying Fourier coefficients, known as dynamic phasors

≡ time clocks of the two simulators are synchronized to the global time

≡ dynamic phasor concept includes absolute time that enables time delay compensation 
based on the phase shift
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Example of Application of Co-Simulation Interface Algorithm based on 
Dynamic Phasors 
■ ACS-SINTEF Distributed Real-Time Simulation Platform 

≡ Real-time simulation of multi-terminal HVDC grids interconnected 
with AC grids and wind farms

= Studies of potential interactions of the control concepts 
implemented in the AC grid generators and control strategies of 
converters

■ VSC-HVDC point to point link 
that connects two AC systems
≡ a case study to demonstrate 

applicability of the Internet-
distributed simulation platform 
for simulation of HVDC grids

■ Simulation start
≡ System response after simulation start indicates 

high fidelity of geographically distributed 
simulation in steady state and during slow 
transients
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ERIC Lab Demonstration

■ Objectives of simulation scenario
≡ Real-time co-simulation of the interconnected transmission and distribution systems

≡ Studies of how different levels of distributed generation, EV penetration in the distribution 
system affect the system operation at both transmission and distribution levels

≡ Collaboration based on a virtual integration is particularly beneficial for this scenario

= There is a need for large-scale power system simulation consisting of detailed 
simulation models of both transmission and distribution systems

= Competences of different areas are required (transmission and distribution systems, 
consumer behavior patterns)

= Confidentiality aspects of sharing data and models among operators is not an issue as 
only interface quantities at the decoupling point are exchanged

■ Overview of roles of laboratories 
≡ Transmission system is simulated on RTDS system at RWTH, Germany

≡ Distribution system is simulated on OPAL-RT system at POLITO, Italy

≡ Prosumer behavior patterns are provided by JRC-Pettan, Netherland

≡ Monitoring based on a web-client in JRC-Ispra, Italy
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ERIC Lab Demonstration
Overview
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ERIC Lab Demonstration
Web Interface

■ Web interface for 
consolidated monitoring of 
simulation
≡ Conceptual layout (to the left)

≡ Technical layout (below)
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RT-Super Lab
Transatlantic Distributed Test Bed

■ Objectives
≡ Establish a vendor-neutral distributed platform based on interconnections Digital Real-

Time Simulators (DRTS), Power-Hardware-In-the-Loop (PHIL) and Controller-Hardware-
In-the-Loop (CHIL) assets hosted at geographically dispersed facilities

≡ Demonstration of multi-lab real-time simulation and distributed PHIL and CHIL setup for 
simulation and analysis of next generation global power grids
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VILLASframework for RT-Super Lab

■ VILLASnode
≡ An instance of VILLASnode 

installed at every laboratory

≡ Gateway for connecting digital 
real-time simulators

≡ Interface to VILLASweb

■ VILLASweb
≡ Web interface for 

consolidated monitoring 
of the distributed 
simulation

≡ Web Server, Backend 
and Database hosted 
at INL for RT-Super 
Lab Demo

≡ Web interface is 
available within VPN for 
all participants
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RT-Super Lab
Demonstration 

■ Leverage unique hardware 

assets located at different 

laboratories and academic 

institutions for simulation and 

testing of next generation 

interconnected grids

≡ 8 Labs

= 5 OPAL-RT, 4 RTDS, 1 Typhoon

≡ 1 CHIL at USC

≡ Communication network emulation 

based on Apposite N-91

≡ 2 PHIL

= NWTC Controllable Grid 

Interface (CGI) interfaced to the 

GE 1.5 MW wind turbine

= Test Bed for PV inverters

≡ Simplified transatlantic HVDC 

interconnection of transmission 

systems in the U.S. and Europe
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RT-Super Lab
Participants

Laboratory
Simulation model / HIL setup Subsyste

m IDFull Name Acronym

Idaho National Laboratory INL
Western Systems Coordinating 

Council (WSCC);
HVDC converter station

ss1

National Renewable Energy 
Laboratory

NREL PHIL for wind turbines ss5

Sandia National Laboratories SNL PHIL for PV inverters ss6

Colorado State University CSU IEEE 13-bus distribution test feeder ss4

University of South Carolina USC
Modified IEEE 123-bus distribution 

system, CHIL, communication 
emulation

ss7

Washington State University WSU Simplified CERTS microgrid ss8

RWTH Aachen University RWTH
European transmission network 

benchmark model (CIGRÉ);
HVDC converter station

ss2

Politecnico di Torino POLITO European distribution network 
benchmark model (CIGRÉ); ss3
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RT-Super Lab
Simulation results #1

■ Activation of CHIL at USC

≡ PV inverters controlled to minimize reactive power at the substation of IEEE 123-bus system 

■ Simulation results at ss1-ss7 co-simulation interface (INL-USC)

≡ Decrease in reactive power at co-simulation (substation) bus

!"#
$"#

Simulation results at ss1-ss7 
co-simulation interface (INL-USC) 
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RT-Super Lab
Simulation results #2

■ Flow of power from INL to RWTH via HVDC
■ Power in the HVDC link is decreased by 25 MW

≡ Generators at WSCC (INL) respond

≡ System frequency at INL increases

!"#
∆%

ss1-ss2 co-simulation interface (INL-RWTH) 
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RT-Super Lab
Simulation results #3

■ Frequency support from a wind turbine
≡ Over frequency event on account of over-generation 

■ Wind turbines respond based on droop settings
≡ Negative sign indicates import to INL from NREL

∆"

Simulation results at ss1-ss5 

#$%
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Local Power System co-simulation
Interconnection of RTDS and OPAL-RT at ACS lab

■ Hard real-time communication 
■ Synchronized execution of simulation time steps

RTDS Rack next to OPAL-RT OP5600

RTDS rear panel: GPC cards

OP5600 rear panel: internal fiber connection to ML605 SFP port

RTDS racks

OPAL-RT 
OP5600
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Models
Transmission: Benchmark Network for DERs testing (by CIGRé)

■ High Voltage Transmission Network Benchmark – European Configuration
≡ 13 buses, 4 generators
≡ 220 and 380 kV, 50 Hz
≡ Simulated on RTDS
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Models
Distribution: Benchmark Network for DERs testing (by CIGRé)

■ Simulated on OPAL-RT

■ Medium Voltage Distribution Network Benchmark – European Configuration

≡ 14 buses

≡ 2 feeders

≡ 2 transformers

≡ 46 MVA contractual load

≡ Different PV penetration levels:

= 6 %

= 20 %
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TN & DN interactions
Simple Demonstration: Scenario

■ The loss of generator 2 at bus 3 of TN causes a voltage drop in neighbouring
buses and, consequently, the disconnection of PVs in DN (details represented)
connected to bus 4.
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TN & DN interactions
Simple Demonstration: Interface values

≡ Currents and voltages measured at the interface point on the two simulators.

= Instantaneous voltages decrease after G2 disconnection

= Interface accuracy is guaranteed also during transients
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TN & DN interactions
Simple Demonstration: Results

≡ In this scenario, the Italian LVRT capability allows most of the PVs to stay connected in the
detailed DN:

= Using co-simulation, new LVRT curves and different placement for PV plants can be
analysed with regard to the voltage security after an event in the transmission network.
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